Abstract

At the stage of planning distributed generation (DG) for a distribution network, the network configuration is a key factor in increasing the DG hosting capacity. The determination of a configuration that maximizes the hosting capacity is a highly complex, nonlinear combinatorial optimization problem. No existing method can yield the global optimal solution for practical-scale networks. Therefore, this paper proposes a scalable optimization method. Specifically, the proposed method enumerates all optimal configurations while simultaneously considering optimal DG placement. The proposed method first optimizes the DG placement for possible partial networks using a second-order cone programming technique. Next, it enumerates possible combinations of the partial networks while avoiding a combinatorial explosion using a highly compressed data structure. Finally, it finds the optimal configurations by exploring solutions over the data structure. In experiments involving a large-scale network containing 235 switches, our enumeration method obtained 1.49×1018 global optimal configurations in 17.1 h. Another powerful feature of our method is that it enables distribution system operators to select the preferred optimal configuration interactively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.