Abstract

Recently, there has been an explosive growth in graphical modeling approaches for estimating brain functional networks. In a detailed study, we show that surprisingly, standard graphical modeling approaches for fMRI data may not yield accurate estimates of the brain network due to the inability to suitably account for temporal correlations. We propose a novel Bayesian matrix normal graphical model that jointly models the temporal covariance and the brain network under a separable structure for the covariance to obtain improved estimates. The approach is implemented via an efficient optimization algorithm that computes the maximum-a-posteriori network estimates having desirable theoretical properties and which is scalable to high dimensions. The proposed method leads to substantial gains in network estimation accuracy compared to standard brain network modeling approaches as illustrated via extensive simulations. We apply the method to resting state fMRI data from the Human Connectome Project involving a large number of time scans and brain regions, to study the relationships between fluid intelligence and functional connectivity, where it is not computationally feasible to apply existing matrix normal graphical models. Our proposed approach led to the detection of differences in connectivity between high and low fluid intelligence groups, whereas these differences were less pronounced or absent using the graphicallasso.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.