Abstract
Liquid organic hydrogen carriers (LOHCs) offer a promising solution for global hydrogen infrastructure, but their practical application faces two key challenges: sluggish dehydrogenation processes and the reliance on catalysts with high noble metal loadings. This study presents a scalable approach to reduce noble metal usage while maintaining high catalytic activity. We synthesized an ultralow Pt content (0.1 wt%) catalyst using γ-Al2O3-based pellet support with atomic layer deposition (ALD) of TiO2. Advanced characterization techniques reveal that the thin ALD-TiO2 shell provides a heterogeneous interface, confining electronically rich Pt-nanoparticle ensembles. The catalyst outperforms both equivalent Pt-content catalysts and a commercial 0.5 wt% Pt/γ-Al2O3 catalyst in homocyclic LOHC dehydrogenation. This study provides insights into the beneficial role of ALD-engineered interfaces for catalytic supports and offers an efficient approach for scalable production of low-noble-metal-content catalysts, with implications for various catalytic processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.