Abstract
In this study, modelling, implementation, and control of a hybrid renewables-based, scalable DC microgrid using multi-input multi-output dual active half-bridge (DAHB) converter is presented. The proposed microgrid architecture exhibits superiority and enhanced functionality in comparison to the existing conventional architectures in terms of the reduced number of converters for each resource integration, modularity, scalability, and bidirectional power flow capability, and local maximum power point tracking for each renewable resource. The proposed architecture is significant in terms that only a single converter is responsible for the whole operation of the DC microgrid. A dual half active bridge acts as a central hub for power processing while multiple renewable energy resources can be integrated through isolated input and output ports. The proposed microgrid is analysed for power flow, and the control scheme for different voltage and power-sharing scenarios is designed. The proposed architecture of the microgrid is simulated on the Power-SIM simulator, and a simplified hardware prototype is implemented in the laboratory with satisfactory results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.