Abstract
We have prepared composite materials of hexagonal nickel phosphide and molybdenum carbide (Mo2C) utilizing a simple and scalable two-stage synthesis method composed of carbothermic reduction followed by hydrothermal incubation. We observe the monophasic hexagonal phosphide Ni2P in the composite at low phosphide-to-carbide (P:C) ratios. Upon an increase in the proportion of P:C, the carbide surface becomes saturated, and we detect the emergence of a second hexagonal nickel phosphide phase (Ni5P4) upon annealing. We demonstrate that vapor-phase upgrading (VPU) of whole biomass via catalytic fast pyrolysis is achievable using the composite material as a catalyst, and we monitor the resulting product slates using pyrolysis-gas chromatography/mass spectrometry. Our analysis of the product vapors indicates that variation of the P:C molar ratio in the composite material affords product slates of varying complexity and composition, which is indicated by the number of products and their relative proportions in the...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.