Abstract

Catalytic fast pyrolysis is a prominent technology for yielding high quality bio-oil and chemicals from lignocellulosic biomass while the application of catalyst has been a hotspot for being capable to deoxygenate bio-oil and enhance its fuel properties. The fundamental reaction pathways in catalytic fast pyrolysis and potential routes of bio-oil and chemicals production from three major individual components are discussed at the early section of the review. The effect and potentiality of solid acid catalyst mainly zeolites, biomass particle size and catalyst loading ratio on the yield and quality of bio-oil are then emphasized. In addition, the lumped kinetic model and distributed activation energy model (DAEM), used to predict the thermal behavior of biomass components and energy calculation in catalytic pyrolysis are described. The recent advances in the understanding of catalytic co-pyrolysis of lignocellulosic biomass with hydrogen rich co-feeder from different sources are also presented. The progress with technical difficulties in catalytic pyrolysis is pointed out having an intention to produce high quality bio-oil. Finally, some challenges and perspectives of improving bio-oil quality through catalytic fast pyrolysis that will be significant approach in the future research work are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.