Abstract

A tunable comb generator (TCG) by cascading a single phase modulator (PM) with two identical intensity modulators (IMs) is proposed for the scalable and reconfigurable generation of flat optical comb. Detailed theoretical analysis is performed to find out the optimized condition for flat optical comb generation using the proposed TCG and the scalability of the generated optical comb is also analyzed under the optimized condition. An experiment is conducted to verify the feasibility of the TCG and the experimental results agree well with the theoretical prediction. The reconfigurability and stability of the obtained optical comb are discussed as well in the experiment. After that, the obtained optical comb is utilized as the optical source for a wavelength-division multiplexed radio-over-fiber (WDM-RoF) system and a hybrid WDM orthogonal frequency-division multiple access passive optical network (WDM-OFDMA-PON). Two corresponding experimental demonstrations are presented to verify the feasibility of employing the obtained flat optical comb as the WDM optical source, respectively. In the WDM-RoF system, 17 WDM channels each carrying 16×5Gb/s non-return-to-zero (NRZ) data have been up-converted to 10GHz simultaneously. In the hybrid WDM-OFDMA-PON, 17-channel OFDM-WDM double-sideband (DSB) signal achieving 10.85Gb/s traffic per channel is successfully transmitted for both wired baseband OFDM access and wireless 10GHz OFDM access.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.