Abstract
Abstract As per the latest roadmap of iNEMI, the global electronics market is emphasizing to identify disruptive technologies that can contribute towards denser, robust and tighter integration on the board level. Therefore, reduction in packaging factor of printed board can accommodate greater number of ICs to support miniaturization. This paper has shown an experimental method to pattern the metallic layer on a Printed circuit Board (PCB) to the smallest feature size. To investigate this, a commercially available FR-4 PCB with photosensitive material coat and a Copper (Cu) layer on it, is used. A reverse-mode Laser assisted writing is implemented to pattern the desired copper tracks. Soon after, a well-controlled development and chemical etching of the Laser-activated regions are done using Sodium Hydroxide solution followed by an aqueous solution of Sodium Persulfate. Current PCB interconnects used by the industries are of the order (~20 μm). Whereas the present work is a contribution towards achieving Copper interconnects with feature size 3.0μm. This miniaturization corresponds to 70% reduction in the feature size from 20 μm to 3 μm. The natural adhesion of the Cu layer has remained intact even after the etching, shows the efficiency of the method adopted. Also, variation in the parameters such as etching time, etchant solution concentrations, temaperature, gain and exposure time of Laser beam and their corresponding effects are discussed. Other highlights of this subtractive method includes its cost-efficiency, lesser production time and repeatability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have