Abstract
Effective approaches to encouraging group cooperation are still an open challenge. Here we apply recent advances in deep learning to structure networks of human participants playing a group cooperation game. We leverage deep reinforcement learning and simulation methods to train a 'social planner' capable of making recommendations to create or break connections between group members. The strategy that it develops succeeds at encouraging pro-sociality in networks of human participants (N = 208 participants in 13 groups) playing for real monetary stakes. Under the social planner, groups finished the game with an average cooperation rate of 77.7%, compared with 42.8% in static networks (N = 176 in 11 groups). In contrast to prior strategies that separate defectors from cooperators (tested here with N = 384 in 24 groups), the social planner learns to take a conciliatory approach to defectors, encouraging them to act pro-socially by moving them to small highly cooperative neighbourhoods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.