Abstract

Motivated by the trend of genome sequencing without completing the sequence of the whole genomes, Munoz et al. recently studied the problem of filling an incomplete multichromosomal genome (or scaffold) I with respect to a complete target genome G such that the resulting genomic distance between I′ and G is minimized, where I′ is the corresponding filled scaffold. We call this problem the one-sided scaffold filling problem. In this paper, we follow Munoz et al. to investigate the scaffold filling problem under the breakpoint distance for the simplest unichromosomal genomes.When the input genome contains no gene repetition (i.e., is a fragment of a permutation), we show that the two-sided scaffold filling problem is polynomially solvable. However, when the input genome contains some genes which appear twice, even the one-sided scaffold filling problem becomes NP-complete. Finally, using the ideas for solving the two-sided scaffold filling problem under the breakpoint distance we show that the two-sided scaffold filling problem under the genomic/rearrangement distance is also polynomially solvable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.