Abstract

Scaffold filling is a new combinatorial optimization problem in genome sequencing. The one-sided scaffold filling problem can be described as: given an incomplete genome I and a complete (reference) genome G, fill the missing genes into I such that the number of common (string) adjacencies between the resulting genome I′ and G is maximized. This problem is NP-complete for genome with duplicated genes and the best known approximation factor is 1.33, which uses a greedy strategy. In this paper, we prove a better lower bound of the optimal solution, and devise a new algorithm by exploiting the maximum matching method and a local improvement technique, which improves the approximation factor to 1.25.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.