Abstract

The aim of this paper is to design a novel parallel computing solution for the processing chain implementing the Small BAseline Subset (SBAS) Differential SAR Interferometry (DInSAR) technique. The proposed parallel solution (P-SBAS) is based on a dual-level parallelization approach and encompasses combined parallelization strategies, which are fully discussed in this paper. Moreover, the main methodological aspects of the proposed approach and their implications are also addressed. Finally, an experimental analysis, aimed at quantitatively evaluating the computational efficiency of the implemented parallel prototype, with respect to appropriate metrics, has been carried out on real data; this analysis confirms the effectiveness of the proposed parallel computing solution. In the current scenario, characterized by huge SAR archives relevant to the present and future SAR missions, the P-SBAS processing chain can play a key role to effectively exploit these big data volumes for the comprehension of the surface deformation dynamics of large areas of Earth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.