Abstract
To avoid the high purity reagents and high energy consumption involved in the manufacturing of lithium-ion battery anode materials, Sb2S3 nanorods/porous-carbon anode was prepared by remodeling natural stibnite ore with porous carbon matrix via a simple melting method. Due to the nanostructure of Sb2S3 nanorods and synergistic effect of porous carbon, the Sb2S3 nanorods/porous-carbon anode achieved high cyclic performance of 530.3 mA·h/g at a current density of 100 mA/g after 150 cycles, and exhibited a reversible capacity of 130.6 mA·h/g at a high current density of 5000 mA/g for 320 cycles. This shows a great possibility of utilizing Sb2S3 ore as raw material to fabricate promising anodes for advanced lithium-ion batteries.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have