Abstract
The anodic properties of antimony trioxide (Sb2O3) nanowires were investigated as electrode material for sodium-ion battery. Sb2O3 nanowires were prepared via a mild-condition, solvothermal route based on the hydrolysis of antimony trichloride (SbCl3) in alcohol aqueous solution. The uniform morphology and crystal phases of Sb2O3 nanowires are confirmed by scanning electronic microscopy, transmission electronic microscopy, and X-ray diffraction. The electrochemical performance of Sb2O3 nanowire anodes was studied and the material exhibits a high reversible capacity of 230 mAh/g which is attributed to the reversible complex conversion–alloying reactions between antimony trioxide and sodium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.