Abstract
Two antimony selenites, Sb2O2SeO3 and Sb2O(SeO3)2, were synthesized by simultaneously incorporating stereochemically active lone pair electrons containing SeO32- and Sb3+. These compounds are structured with [SbOx] polyhedra and [SeO3] units within a two-dimensional framework. Both of them exhibit cutoffs at 300 and 330 nm within the ultraviolet (UV) range and demonstrate significant birefringence, with indices of 0.069 and 0.126 at 546 nm, respectively. These properties highlight their potential as UV birefringent materials. Structural analyses and theoretical calculations reveal that their exceptional birefringence results from the synergistic interactions between SeO32- anions and Sb3+ cations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have