Abstract

Si/Si0.97C0.03 superlattices were grown on Si(001) substrates by molecular beam epitaxy (MBE) to study the use of Sb as a surfactant during Si1−yCy growth. In situ reflection high energy electron diffraction (RHEED) shows that while carbon easily disrupts the two-dimensional growth of homoepitaxial Si, such disruption is suppressed for layers grown on Sb-terminated Si(001) surfaces. Cross-sectional transmission electron microscopy (TEM) reveals that for samples grown without the use of Sb, the Si/Si0.97C0.03 interfaces (Si0.97C0.03 on Si) were much more abrupt than Si0.97C0.03/Si interfaces. In the case of Sb-mediated growth, differences in abruptness between the two types of interfaces were not readily observable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call