Abstract
Electrocatalytic carbon dioxide (CO2) is a forward-looking strategy to convert renewable energy into fuel. Herein, we show that the novel Sb-doped SnS2 nanosheets were synthesized by a simple hydrothermal method for efficient electroreduction of CO2, and the atomic ratio of Sb/Sn was controllable. The introduction of Sb significantly enhanced the current density and Faradaic efficiency for formate products compared to pristine SnS2 nanosheets. When the Sb content was 1%, the Sb-SnS2 nanosheets achieved a remarkable Faradaic efficiency of 90.86% for formate products at −1.1 V vs. RHE. The experimental results showed that 1% Sb-doped SnS2 nanosheets changed the electronic structure of the Sn element, allowing the catalyst to reconfigure to generate Sn0 during the electrochemical reaction, while the singlet tin had a synergistic effect with Sn4+, making it easier to transport electrons on the surface and promoting the activation process of CO2, which is a key factor to improve the electroreduction performance of CO2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.