Abstract
This paper presents a machine vision-based scheme to automatically detect saw-mark defects in solar wafer surfaces. A saw-mark defect is a severe flaw when cutting a silicon ingot into wafers. A multicrystalline solar wafer surface presents random shapes, sizes and orientations of crystal grains in the surface and, thus, results in a heterogeneous texture. It makes the automatic visual inspection task extremely difficult. The deep learning technique is an ideal choice to tackle the problem, but it requires a huge amount of positive (defect-free) and negative (defective) samples for the training. The negative samples are generally not sufficient enough in a manufacturing process. We thus apply a GAN-based model to generate the defective samples for training, and then use the true defect-free samples and the synthesized defective samples to train a CNN model. It solves the imbalanced data arising in manufacturing inspection. The preliminary experiment has shown promising results of the proposed method for detecting various saw-mark defects including black line, white line, and impurity in multicrystalline solar wafers.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have