Abstract

This article reviews the scientific career and accomplishments of the late Dr. Saul Brusilow, Professor of Pediatrics at Johns Hopkins. Dr. Brusilow's career was focused on diseases involving hyperammonemia. He and his colleagues developed a set of drugs that could lower ammonia levels in patients with genetic disorders of the urea cycle by providing alternative pathways for the synthesis of excretable nitrogenous molecules. Those drugs and their derivatives represent one of the earliest and most successful drug therapies for genetic diseases. Turning their attention to brain swelling caused by liver disease, Dr. Brusilow and colleagues developed the Osmotic Gliopathy Hypothesis to help explain the mechanism of ammonia toxicity, postulating that high ammonia drives glutamine synthetase in astrocytes to produce elevated levels of glutamine that act as a potent osmolyte, drawing water into the cell and causing cerebral edema. This hypothesis suggests that inhibiting glutamine synthetase with its well-characterized inhibitor, methionine sulfoximine, might prove therapeutic in cases of hepatic encephalopathy, a conclusion supported by their subsequent studies in animals. But although the drugs developed to treat hyperammonemia resulting from urea cycle disorders were successfully developed and approved by the FDA, the compound suggested as a treatment for hepatic encephalopathy was unable to attract sufficient interest and investment to be tested for use in humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.