Abstract

Saturn is the only planet in the solar system whose observed magnetic field is highly axisymmetric. At least a small deviation from perfect symmetry is required for a dynamo-generated magnetic field. Analyzing more than six years of magnetometer data obtained by Cassini close to the planet, we show that Saturn's observed field is much more axisymmetric than previously thought. We invert the magnetometer observations that were obtained in the “current-free” inner magnetosphere for an internal model, varying the assumed unknown rotation rate of Saturn's deep interior. No unambiguous non-axially symmetric magnetic moment is detected, with a new upper bound on the dipole tilt of 0.06°. An axisymmetric internal model with Schmidt-normalized spherical harmonic coefficients g10 = 21,191 ± 24 nT, g20 = 1586 ± 7 nT. g30 = 2374 ± 47 nT is derived from these measurements, the upper bounds on the axial degree 4 and 5 terms are 720 nT and 3200 nT respectively. The secular variation for the last 30 years is within the probable error of each term from degree 1 to 3, and the upper bounds are an order of magnitude smaller than in similar terrestrial terms for degrees 1 and 2. Differentially rotating conducting stable layers above Saturn's dynamo region have been proposed to symmetrize the magnetic field (Stevenson, 1982). The new upper bound on the dipole tilt implies that this stable layer must have a thickness L >= 4000 km, and this thickness is consistent with our weak secular variation observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.