Abstract
Saturated operation of an X-ray laser is desirable as a high output irradiance is obtained with reduced shot-to-short variation. The potential of saturated X-ray laser output in probing plasma samples is first investigated. The laser pumping requirements to scale Ni-like saturated X-ray laser output to shorter wavelengths is then analyzed using published atomic physics data and a simple 4-level laser model for gain. A model of amplified spontaneous emission has been modified to accurately predict experimentally observed saturation behavior obtained in different experiments at the Rutherford Appleton Laboratory. In particular, the effects of traveling wave pumping with short duration (approximately 1 ps) laser pulses are investigated. Simulations of Ne-like Ge resonance line emission are compared to experimentally measured spectra.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have