Abstract
The resolution of optical microscopy is limited by the numerical aperture and the wavelength of light. Many strategies for improving resolution such as 4Pi and I5M have focused on an increase of the numerical aperture. Other approaches have based resolution improvement in fluorescence microscopy on the establishment of a nonlinear relationship between local excitation light intensity in the sample and in the emitted light. However, despite their innovative character, current techniques such as stimulated emission depletion (STED) and ground-state depletion (GSD) microscopy require complex optical configurations and instrumentation to narrow the point-spread function. We develop the theory of nonlinear patterned excitation microscopy for achieving a substantial improvement in resolution by deliberate saturation of the fluorophore excited state. The postacquisition manipulation of the acquired data is computationally more complex than in STED or GSD, but the experimental requirements are simple. Simulations comparing saturated patterned excitation microscopy with linear patterned excitation microscopy (also referred to in the literature as structured illumination or harmonic excitation light microscopy) and ordinary widefield microscopy are presented and discussed. The effects of photon noise are included in the simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.