Abstract

We introduce the concept of saturated absorption competition (SAC) microscopy as a means of providing sub-diffraction spatial resolution in fluorescence imaging. Unlike the post-competition process between stimulated and spontaneous emission that is used in stimulated emission depletion (STED) microscopy, SAC microscopy breaks the diffraction limit by emphasizing a pre-competition process that occurs in the fluorescence absorption stage in a manner that shares similarities with ground-state depletion (GSD) microscopy. Moreover, unlike both STED and GSD microscopy, SAC microscopy offers a reduction in complexity and cost by utilizing only a single continuous-wave laser diode and an illumination intensity that is ~ 20x smaller than that used in STED. Our approach can be physically implemented in a confocal microscope by dividing the input laser source into a time-modulated primary excitation beam and a doughnut-shaped saturation beam, and subsequently employing a homodyne detection scheme to select the modulated fluorescence signal. Herein, we provide both a physico-chemical model of SAC and experimentally demonstrate by way of a proof-of-concept experiment a transverse spatial resolution of ~lambda/6.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.