Abstract

AbstractFor an abelian surface A over a number field k, we study the limiting distribution of the normalized Euler factors of the L-function of A. This distribution is expected to correspond to taking characteristic polynomials of a uniform random matrix in some closed subgroup of USp(4); this Sato–Tate group may be obtained from the Galois action on any Tate module of A. We show that the Sato–Tate group is limited to a particular list of 55 groups up to conjugacy. We then classify A according to the Galois module structure on the ℝ-algebra generated by endomorphisms of $A_{{\overline {\mathbb Q}}}$ (the Galois type), and establish a matching with the classification of Sato–Tate groups; this shows that there are at most 52 groups up to conjugacy which occur as Sato–Tate groups for suitable A and k, of which 34 can occur for k=ℚ. Finally, we present examples of Jacobians of hyperelliptic curves exhibiting each Galois type (over ℚ whenever possible), and observe numerical agreement with the expected Sato–Tate distribution by comparing moment statistics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.