Abstract
Associated to an abelian variety over a number field are several interesting and related groups: the motivic Galois group, the Mumford–Tate group, $$\ell $$ -adic monodromy groups, and the Sato–Tate group. Assuming the Mumford–Tate conjecture, we show that from two well chosen Frobenius polynomials of our abelian variety, we can recover the identity component of these groups (or at least an inner form), up to isomorphism, along with their natural representations. We also obtain a practical probabilistic algorithm to compute these groups by considering more and more Frobenius polynomials; the groups are connected and reductive and thus can be expressed in terms of root datum. These groups are conjecturally linked with algebraic cycles and in particular we obtain a probabilistic algorithm to compute the dimension of the Hodge classes of our abelian variety for any fixed degree.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.