Abstract
Homodimeric prodrug nanoassemblies (HDPNs) hold promise for improving the delivery efficiency of chemo-drugs. However, the key challenge lies in designing rational chemical linkers that can simultaneously ensure the chemical stability, self-assembly stability, and site-specific activation of prodrugs. The "in series" increase in sulfur atoms, such as trisulfide bond, can improve the assembly stability of HDPNs to a certain extent, but limits the chemical stability of prodrugs. Herein, trithiocarbonate bond (─SC(S)S─), with a stable "satellite-type" distribution of sulfur atoms, is developed via the insertion of a central carbon atom in trisulfide bonds. ─SC(S)S─ bond effectively addresses the existing predicament of HDPNs by improving the chemical and self-assembly stability of homodimeric prodrugs while maintaining the on-demand bioactivation. Furthermore, ─SC(S)S─ bond inhibits antioxidant defense system, leading to up-regulation of the cellular ROS and apoptosis of tumor cells. These improvements of ─SC(S)S─ bond endow the HDPNs with in vivo longevity and tumor specificity, ultimately enhancing the therapeutic outcomes. ─SC(S)S─ bond is, therefore, promising for overcoming the bottleneck of HDPNs for efficient oncological therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.