Abstract

AbstractA powerful tool to investigate the stability of the orbits of natural and artificial bodies is represented by perturbation theory, which allows one to provide normal form estimates for nearly-integrable problems in Celestial Mechanics. In particular, we consider the orbital stability of point-mass satellites moving around the Earth. On the basis of the J2 model, we investigate the stability of the semimajor axis. Using a secular Hamiltonian model including also lunisolar perturbations, the so-called geolunisolar model, we study the stability of the other orbital elements, namely the eccentricity and the inclination. We finally discuss the applicability of Nekhoroshev’s theorem on the exponential stability of the action variables. To this end, we investigate the non-degeneracy properties of the J2 and geolunisolar models. We obtain that the J2 model satisfies a “three-jet” non-degeneracy condition, while the geolunisolar model is quasi-convex non-degenerate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.