Abstract

It is attempted to obtain the masses of the celestial bodies, the initial conditions of their motion, and the constant of gravitation, by a global parameter optimization. First, a numerical solution of the N-bodies problem for mass points is described and its high accuracy verified. The osculating elements are also accurately computed. This solution is implemented in the Gauss iterative algorithm for solving nonlinear least-squares problems. This algorithm is summarized, and its efficiency for the inverse problem in celestial mechanics is checked on a 3-bodies problem. Then it is used to assess the accuracy to which a Newtonian calculation may reproduce the DE403 ephemeris that involves general-relativistic corrections. The parameter optimization allows one to reduce the norm and angular differences between the Newtonian calculation and DE403 by a factor 10 (Mercury, Pluto) to 100 (Venus). The maximum angular difference of the heliocentric positions of Mercury is ca. 220″ per century before the optimization, and ca. 20″ after it. The latter is still far above the observational accuracy. On the other hand, Mercury's longitude of the perihelion is not affected by the optimization: it keeps the linear advance of 43″ per century.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.