Abstract

AbstractThe thermal air–sea interaction mechanism that modulates the atmospheric mixing due to sea‐surface temperature (SST) variability is studied with long‐term consistent satellite records. Statistical analyses of daily and instantaneous wind and SST data are performed over the major western boundary currents (WBCs). This wind–SST coupling, which is mediated by atmospheric mixing, is found to be very relevant on daily, and even shorter, time scales. Co‐located and simultaneous SST and surface wind fields (from Advanced Very High Resolution Radiometer and Advanced Scatterometer data) reveal that the atmosphere responds instantaneously to the presence of SST structures with a larger coupling coefficient with respect to daily and monthly time‐averaged fields. The coupling strength varies seasonally over WBCs in the Northern Hemisphere, with wintertime coupling being the lowest. Reanalysis data show that this behaviour is related to the seasonality of the air–sea temperature difference over the region of interest. Over the Northern Hemisphere WBCs, dry and cold continental air masses drive very unstable conditions, associated with very weak thermal air–sea coupling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.