Abstract

Satellite precipitation estimates are increasingly available at temporal and spatial scales of interest to hydrological applications and with the potential for improving flood forecasts in data-sparse regions. This study evaluates the effect of sampling error on simulated large flood events. Synthetic precipitation fields were generated in Monte Carlo fashion by perturbing observed precipitation fields with sampling errors based on 1, 2 and 6 h intervals. The variable infiltration capacity hydrological model was used to assess the impact of these errors on simulated high flow events in the Iguazu basin, a rain-dominated, subtropical basin in southeastern South America. Results showed that unbiased errors in daily error-corrupted precipitation fields introduced bias in the simulated hydrologic fluxes and states. The overall bias for error-corrupted daily streamflows was positive and its magnitude increased with larger sampling intervals. However, for high flow events, the bias was negative as a result of an increase in simulated infiltration and changes in precipitation variability. Errors in precipitation also affected the magnitude and volume of the peak events but did not change the first two statistical moments of the peaks indicating that non-linearities in the hydrological system preserve the statistical properties of high flows in the basin. Caution is needed when using satellite products for hydrological applications that require the estimation of large peaks and volumes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call