Abstract

ABSTRACT In the era of Climate Change and Climate Variability (CC and CV), renewable energy sources such as Hydropower (HP) have a significant role to play in mitigation. However, inflow to reservoir which is the key fuel for HP generation is vulnerable to CC and CV. Thus, there is a need to investigate the potential impacts of CC and CV on HP systems in the future. This study attempts to assess the potential impacts of CC and CV on the Faye reservoir inflow using the Random Forest (RF) algorithm. For this purpose, bias-adjusted precipitation and temperature data of thirteen climate model outputs and their ensemble mean from Coupled Model Inter-comparison Project Phase 6 (CMIP6) under three Shared Socioeconomic Pathways scenarios (SSP1-2.6; SSP2-4.5 and SSP5-8.5) were used as predictors. The potential changes in reservoir inflows were evaluated in the near (2025–2049), mid (2050–2074) and far (2075–2099) futures relative to the reference period (1990–2014). The results show the good performance of the RF algorithm in simulating reservoir inflows with Cor > 0.6 for all models. The annual inflows to the Faye reservoir are noted to increase in the future compared to the reference period despite the potential decrease in future precipitation probably due to land use/cover change. For the ensemble mean of models, this projected increase is estimated to around 16%, 23% and 10%, respectively under the SSP1-2.6, SSP2-4.5 and SSP5-8.5 scenarios for all projection periods. The largest annual increase is noted under the SSP2-4.5 scenario while the lowest increase is noted under the SSP5-8.5 scenario for all projection periods. This study could help the small dam managers better consider the implications of CC and CV on inflow management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.