Abstract
Land-use change has a key role in hydrologic processes and biodiversity. Although many satellite-based studies have been conducted to reveal the interaction between land-use changes in hydrological processes worldwide, the land-use change impact on agricultural water consumption in hyper-arid regions is poorly understood. Here, we investigate increased agricultural water consumption in the Qom province, a hyper-arid region in Iran, using derived imageries from Landsat 5 Tm and Landsat 8 OLI during the last three decades. We used maximum likelihood classification (MLC) and decision tree classification (DTC) to analyze the satellite images. The MLC method showed that croplands have increased from 30,547 ha in 1989 to 39,255 ha in 2019 (i.e., a 29% increase). In this period, the total orchard area increased from 3904 ha to 6307 ha, revealing a growth of 61%. In the DTC method, the increases in the cropland and orchard areas were, respectively, 34% and 60%. Although both MLC and DTC satisfied the accuracy criteria, the former was more consistent than the latter concerning ground data and documented statistics. Satellite-based and MLC results showed an increase in agricultural water consumption from 152 million cubic meters (MCM) in 1989 to 209 MCM in 2019, showing a 38% increase (i.e., 1.27% annually). Our findings send an alarming message for policymakers to reduce the water demand through sustainable agricultural practices in the Qom province, where the agricultural sector uses approximately 90% of annual water demand.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have