Abstract
Abstract. Climate regulates fire activity through the buildup and drying of fuels and the conditions for fire ignition and spread. Understanding the dynamics of contemporary climate–fire relationships at national and sub-national scales is critical to assess the likelihood of changes in future fire activity and the potential options for mitigation and adaptation. Here, we conducted the first national assessment of climate controls on US fire activity using two satellite-based estimates of monthly burned area (BA), the Global Fire Emissions Database (GFED, 1997–2010) and Monitoring Trends in Burn Severity (MTBS, 1984–2009) BA products. For each US National Climate Assessment (NCA) region, we analyzed the relationships between monthly BA and potential evaporation (PE) derived from reanalysis climate data at 0.5° resolution. US fire activity increased over the past 25 yr, with statistically significant increases in MTBS BA for the entire US and the Southeast and Southwest NCA regions. Monthly PE was strongly correlated with US fire activity, yet the climate driver of PE varied regionally. Fire season temperature and shortwave radiation were the primary controls on PE and fire activity in Alaska, while water deficit (precipitation – PE) was strongly correlated with fire activity in the Plains regions and Northwest US. BA and precipitation anomalies were negatively correlated in all regions, although fuel-limited ecosystems in the Southern Plains and Southwest exhibited positive correlations with longer lead times (6–12 months). Fire season PE increased from the 1980's–2000's, enhancing climate-driven fire risk in the southern and western US where PE–BA correlations were strongest. Spatial and temporal patterns of increasing fire season PE and BA during the 1990's–2000's highlight the potential sensitivity of US fire activity to climate change in coming decades. However, climate-fire relationships at the national scale are complex, based on the diversity of fire types, ecosystems, and ignition sources within each NCA region. Changes in the seasonality or magnitude of climate anomalies are therefore unlikely to result in uniform changes in US fire activity.
Highlights
Climate is a fundamental constraint on fire activity
Spatial patterns of recent fire activity from the Monitoring Trends in Burned Severity (MTBS) data record were similar between the GFED years (1997–2009) and the full burned area (BA) time series (1984– 2009, Fig. 1)
This study provides the first national-scale assessment of climate controls on US fire activity using satellite BA data
Summary
Climate is a fundamental constraint on fire activity. Climate conditions influence the quantity and condition of fuels (e.g., Arora and Boer, 2005; van der Werf et al, 2008b; Thonicke et al, 2010), rate of fire spread (e.g., Rothermel, 1972; Scott and Burgan, 2005), and frequency of fire ignitions from lightning (Bartlein et al, 2008; Christian et al, 2003). The timing, frequency, and extent of recent fires reflect this complex suite of interactions among climate, ecosystems, and human societies (e.g., Thonicke et al, 2010; Giglio et al, 2006; Lavorel et al, 2007; Krawchuk et al, 2009; van der Werf et al, 2010; Kloster et al, 2010; Bowman et al, 2011; O’Connor et al, 2011).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.