Abstract

Abstract. Atmospheric concentrations of nitrous oxide (N2O), a potent greenhouse gas that is also responsible for significant stratospheric ozone depletion, have increased in response to the intensified use of agricultural fertilizers and other human activities that have accelerated nitrogen cycling processes. Microbial denitrification in soils and sediments is a major source of N2O, produced as an intermediate during the reduction of oxidized forms of nitrogen to dinitrogen gas (N2). Substrate availability (nitrate and organic matter) and environmental factors such as oxygen levels, temperature, moisture, and pH influence rates of denitrification and N2O production. Here we describe the role of physicochemical perturbation (defined here as a change from the ambient environmental conditions) in influencing rates of denitrification and N2O production. Changes in salinity, temperature, moisture, pH, and zinc in agricultural soils induced a short-term perturbation response characterized by lower rates of total denitrification and higher rates of net N2O production. The ratio of N2O to total denitrification (N2O : DNF) increased strongly with physicochemical perturbation. A salinity press experiment on tidal freshwater marsh soils revealed that increased N2O production was likely driven by transcriptional inhibition of the nitrous oxide reductase (nos) gene and that the microbial community adapted to altered salinity over a relatively short time frame (within 1 month). Perturbation appeared to confer resilience to subsequent disturbance, and denitrifiers from an environment without salinity fluctuations (tidal freshwater estuarine sediments) demonstrated a stronger N2O perturbation response than denitrifiers from environments with more variable salinity (oligohaline and mesohaline estuarine sediments), suggesting that the denitrifying community from physicochemically stable environments may have a stronger perturbation response. These findings provide a framework for improving our understanding of the dynamic nature of N2O production in soils and sediments, in which changes in physical and/or chemical conditions initiate a short-term perturbation response that promotes N2O production that moderates over time and with subsequent physicochemical perturbation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.