Abstract
We study satellite galaxy abundances in SDSS by counting photometric galaxies around isolated bright primaries. We present results as a function of the luminosity, stellar mass and colour of the satellites, and of the stellar mass and colour of the primaries. For massive primaries the luminosity and stellar mass functions of satellites are similar in shape to those of field galaxies, but for lower mass primaries they are significantly steeper. The steepening is particularly marked for the stellar mass function. Satellite abundance increases strongly with primary stellar mass, approximately in proportion to expected dark halo mass. Massive red primaries have up to a factor of 2 more satellites than blue ones of the same stellar mass. Satellite galaxies are systematically redder than field galaxies of the same stellar mass. Satellites are also systematically redder around more massive primaries. At fixed primary mass, they are redder around red primaries. We select similarly isolated galaxies from mock catalogues based on the simulations of Guo et al.(2011) and analyze them in parallel with the SDSS data. The simulation reproduces all the above trends qualitatively, except for the steepening of the satellite luminosity and stellar mass functions. Model satellites, however, are systematically redder than in the SDSS, particularly at low mass and around low-mass primaries. Simulated haloes of a given mass have satellite abundances that are independent of central galaxy colour, but red centrals tend to have lower stellar masses, reflecting earlier quenching of their star formation by feedback. This explains the correlation between satellite abundance and primary colour in the simulation. The correlation between satellite colour and primary colour arises because red centrals live in haloes which are more massive, older and more gas-rich, so that satellite quenching is more efficient.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.