Abstract

BackgroundHospitalization of patients infected with the severe acute respiratory syndrome virus 2 (SARS-CoV-2) have remained considerable worldwide. Patients often develop severe complications and have high mortality rates. The cycle threshold (Ct) value derived from nasopharyngeal swab samples using real time polymerase chain reaction (RT-PCR) may be a useful prognostic marker in hospitalized patients with SARS-CoV-2 infection, however, its role in predicting the course of the pandemic has not been evaluated thus far.MethodsWe conducted a retrospective cohort study which included all patients who had a nasopharyngeal sample positive for SARS-CoV-2 between April 4 –June 5, 2020. The Ct value was used to estimate the number of viral particles in a patient sample. The trend in initial viral load on admission on a population level was evaluated. Moreover, patient characteristics and outcomes stratified by viral load categories were compared and initial viral load was assessed as an independent predictor of intubation and in-hospital mortality.ResultsA total of 461 hospitalized patients met the inclusion criteria. This study consisted predominantly of acutely infected patients with a median of 4 days since symptom onset to PCR. As the severity of the pandemic eased, there was an increase in the percentage of samples in the low initial viral load category, coinciding with a decrease in deaths. Compared to an initial low viral load, a high initial viral load was an independent predictor of in-hospital mortality (OR 5.5, CI 3.1–9.7, p < 0.001) and intubation (OR 1.82 CI 1.07–3.11, p = 0.03), while an initial intermediate viral load was associated with increased risk of inpatient mortality (OR 1.9, CI 1.14–3.21, p = 0.015) but not with increased risk for intubation.ConclusionThe Ct value obtained from nasopharyngeal samples of hospitalized patients on admission may serve as a prognostic marker at an individual level and may help predict the course of the pandemic when evaluated at a population level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.