Abstract

BackgroundOne of the regulators in severe acute respiratory syndrome coronavirus2 (SARS-CoV2) infection is miRNAs. In COVID-19 patients, immunological responses to SARS-CoV2 infection may be impacted by miR-155, a miRNA associated to inflammation. Materials and methodsPeripheral blood mononuclear cells (PBMCs) of 50 confirmed COVID-19 patients /Healthy Controls (HCs) was isolated by Ficoll. The frequency of T helper 17 and regulatory T cells was analyzed by flowcytometry. The RNA was extracted from each sample and after synthesis of c-DNA, the relative expression of miR-155, suppressor of cytokine signaling (SOCS-1), Signal transducer and activator of transcription 3(STAT3), and Fork Head Box Protein 3 (FoxP3) was evaluated by real-time PCR. The protein level of STAT3, FoxP3 and RORγT in the isolated PBMCs measured by western blotting. The serum level of IL-10, TGF-β, IL-17 and IL21 was assessed by ELISA method. ResultsThe population of Th17 cells showed a significant rise, whereas Treg cells reduced in COVID-19 cases. The master transcription factor of Treg (FoxP3) and Th17 (RORγT) relative expression showed the same pattern as flowcytometry. STAT3 level of expression at RNA and protein level increased in COVID-19 cases. FOXP3 and SOCS-1 proteins were down-regulated. The relative expression of miR-155, up-regulated in PBMC of COVID-19 patients and revealed a negative correlation with SOCS-1. The serum cytokine profile showed a reduction in TGF-β, on the other hand an increase was seen in IL-17, IL-21 and IL-10 in COVID-19 cases toward control group. ConclusionBased on the studies conducted in this field, it can be suggested that Th17/Treg in covid-19 patients can be affected by miR-155 and it can be considered a valuable diagnostic and prognostic factor in this disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call