Abstract

The zebrafish is an established model of vertebrate development and is also receiving increasing attention in terms of human disease modelling. In order to provide experimental support to realize this modelling potential, we report here the identification of apparent orthologues of many critical members of the dystrophin-associated glycoprotein complex (DGC) that have been implicated in a diverse range of neuromuscular disorders. In addition, immunohistochemical studies show the localization of the DGC to the sarcolemma of adult zebrafish muscle and in particular the myosepta. Together, these data suggest that the DGC in adult zebrafish may play a highly conserved functional role in muscle architecture that, when disrupted, could offer insight into human neuromuscular disease processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.