Abstract

It is difficult to collect training samples for all types of synthetic aperture radar (SAR) targets. A realistic problem comes when unseen categories exist that are not included in training and benchmark data at the time of recognition, which is defined as open set recognition (OSR). Without the aid of side-information, generalized OSR methods used on ordinary optical images are usually not suitable for SAR images. In addition, OSR methods that require a large number of samples to participate in training are also not suitable for SAR images with the realistic situation of collection difficulty. In this regard, a task-oriented OSR method for SAR is proposed by distribution construction and relation measures to recognize targets of seen and unseen categories with limited training samples, and without any other simulation information. The method can judge category similarity to explain the unseen category. Distribution construction is realized by the graph convolutional network. The experimental results on the MSTAR dataset show that this method has a good recognition effect for the targets of both seen and unseen categories and excellent interpretation ability for unseen targets. Specifically, while recognition accuracy for seen targets remains above 95%, the recognition accuracy for unseen targets reaches 67% for the three-type classification problem, and 53% for the five-type classification problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.