Abstract

Radio frequency interference (RFI) can significantly pollute synthetic aperture radar (SAR) data and images, which is also harmful to SAR interferometry (InSAR) for retrieving elevational information. To address this issue, in recent years, a class of advanced RFI suppression methods has been proposed based on narrowband properties of RFI and sparsity assumptions of radar echoes or target reflectivity. However, for SAR echoes and the associated scene reflectivity, these assumptions are usually not feasible when the imaged scene is spatially extended. In view of these problems, this study proposes an InSAR-based RFI suppression method for the case of extended scenes. For this task, we combine the RFI-polluted SAR data with RFI-free interferometric data to form an interferometric SAR data pair. We show that such an InSAR data pair embeds an interferogram having the image amplitude multiplying by a complex exponential interferometric phase. We treat the interferogram as a kind of natural image and use discrete Fourier cosine transform (DCT) for its sparse representation. Then combining the DCT-domain sparsity with low-rank modeling of RFI, we retrieve the interferogram and reconstruct the SAR image via joint low-rank and sparse optimization. Numerical simulations show that the proposed method can effectively recover SAR images and interferometric phases from RFI-polluted SAR data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call