Abstract

In the Synthetic Aperture Radar (SAR) remote sensing image, ships are visually significant targets on the sea surface. Because they are made of metal, thus the backscatter is strong, while the sea surface is smooth and the backscatter is weak. However, the large-width SAR remote sensing image has a complicated sea background, and the features of various ship targets are quite different. To solve this problem, a SAR remote sensing image ship detection model called NanoDet is proposed. NanoDet is based on visual saliency. First, the image samples are divided into various scene categories using an automatic clustering algorithm. Second, differentiated saliency detection is performed for images in various scenes. Finally, the optimized lightweight network model, NanoDet, is used to perform feature learning on the training samples added with the saliency maps, so that the system model can achieve fast and high-precision ship detection effects. This method is helpful for the real-time application of SAR images. The lightweight model is conducive to hardware transplantation in the future.This study conducts experiments based on the public data set SSDD and AIR-SARship-2.0, and the experiments results verify the effectiveness of our approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.