Abstract

In this paper we prove a Sanov result, i.e. a Large Deviation Principle (LDP) for the distribution of the empirical measure, for the annealed Glauber dynamics of the Sherrington-Kirkpatrick spin-glass. Without restrictions on time or temperature we prove a full LDP for the asymmetric dynamics and the crucial upper large deviations bound for the symmetric dynamics. In the symmetric model a new order-parameter arises corresponding to the response function in [SoZi83]. In the asymmetric case we show that the corresponding rate function has a unique minimum, given as the solution of a self-consistent equation. The key argument used in the proofs is a general result for mixing of what is known as Large Deviation Systems (LDS) with measures obeying an independent LDP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.