Abstract

BackgroundPrevious studies showed sanguinarine induced apoptosis in CRC cells but did not define the underlying mechanisms. The purpose of this work was to determine the in vivo and in vitro effects of sanguinarine on CRC tumors and to elucidate the mechanism in regulating the intrinsic apoptosis.MethodsCell viability of CRC cell lines treated with sanguinarine was measured by MTT assay. Apoptotic cells stained with Annexin V and 7-AAD were detected by flow cytometry. Mitochondrial membrane potential and reactive oxygen species (ROS) were analyzed by JC-1 and DCFH-DA staining, respectively. The in vitro kinase activity of MELK was analyzed by using HTRF® KinEASE™-STK kit. The expression of proteins were determined using Western blotting and immunohistochemistry. Co-immunoprecipitation and immunofluorecence were used to study the interaction between STRAP and MELK. The anti-neoplastic effect of sanguinarine was observed in vivo in an orthotopic CRC model.ResultsSanguinarine decreased the tumor size in a dose-dependent manner in orthotopical colorectal carcinomas through intrinsic apoptosis pathway in BALB/c-nu mice. It significantly increased cleavage of caspase 3 and PARP in implanted colorectal tissues. Sanguinarine increased mitochondrial ROS and triggered mitochondrial outer membrane permeabilization in multiple colorectal cancer (CRC) cell lines. NAC pretreatment lowered ROS level and downregulated apoptosis induced by sanguinarine. The intrinsic apoptosis induced by sanguinarine was Bax-dependent. The elevated expression and association between serine-threonine kinase receptor-associated protein (STRAP) and maternal embryonic leucine zipper kinase (MELK) were observed in Bax positive cells but not in Bax negative cells. Sanguinarine dephosphorylated STRAP and MELK and disrupted the association between them in HCT116 and SW480 cells. The expression and association between STRAP and MELK were also attenuated by sanguinarine in the tumor tissues. Importantly, we found that STRAP and MELK were overexpressed and highly phosphorylated in colorectal adenocarcinomas and their expression were significantly correlated with tumor stages. Furthermore, the expression of MELK, but not STRAP, was associated with lymph node metastasis.ConclusionsSanguinarine dephosphorelates STRAP and MELK and disassociates the interaction between them to trigger intrinsic apoptosis. Overexpression of STRAP and MELK may be markers of CRC and their disassociation may be a determinant of therapeutic efficacy.

Highlights

  • Previous studies showed sanguinarine induced apoptosis in Colorectal cancer (CRC) cells but did not define the underlying mechanisms

  • These results suggested that the growth of orthotopical implanted CRC was suppressed by sanguinarine via the induction of apoptosis

  • Our current study focused on these unaddressed mechanisms and found that mitochondrial outer membrane permeabilization (MOMP) is activated by sanguinarine and Bax is a key regulator in sanguinarine induced MOMP

Read more

Summary

Introduction

Previous studies showed sanguinarine induced apoptosis in CRC cells but did not define the underlying mechanisms. Apoptosis includes two main pathways which are termed “extrinsic pathway” and “intrinsic pathway” that involve cell surface death receptors or the mitochondria respectively [3]. The pro-apoptotic proteins Bax or Bak of Bcl-2 family constitute the central effector of the intrinsic pathway [4]. Mitochondria have key roles in intrinsic apoptosis execution. Mitochondrial reactive oxygen species (ROS) signaling increases longevity through the intrinsic apoptosis pathway in the nematode C. elegans [5]. Bax is a key regulatory role in inducing the mitochondrial outer membrane permeabilization (MOMP) [8]. Mitochondria, the convergence of pro-apoptotic proteins and redox, orchestrate the sequential events of MOMP and intrinsic apoptosis

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call