Abstract

Background and Objectives: Diabetes is a global health issue, with approximately 50% of patients developing diabetic nephropathy (DN) and 25% experiencing early and severe forms of the disease. The genetic factors contributing to rapid disease progression in a subset of these patients are unclear. This study investigates genetic variations in the GLO-1, CBR-1, and ACE genes associated with early and severe DN. Materials and Methods: Sanger DNA sequencing of the exons of CBR1, GLO1, and ACE genes was conducted in 113 patients with early and severe DN (defined as occurring within 10 years of the diagnosis of diabetes and with eGFR < 45 mL/min/1.73 m2) and 100 controls. The impact of identified genetic variations was analyzed using computational protein models created in silico with SWISS-Model and SWISS-Dock for ligand binding interactions. Results: In GLO1, two heterozygous missense mutations, c.102G>T and c.147C>G, and one heterozygous nonsense mutation, c.148G>T, were identified in patients. The SNP rs1049346 (G>A) at location 6:38703061 (GRCh38) was clinically significant. The c.147C>G mutation (C19S) was associated with ligand binding disruption in the GLO1 protein, while the nonsense mutation resulted in a truncated, non-functional protein. In CBR1, two heterozygous variations, one missense c.358G>A, and one silent mutation c.311G>C were observed, with the former (D120N) affecting the active site. No significant changes were noted in ACE gene variants concerning protein structure or function. Conclusions: The study identifies four novel and five recurrent mutations/polymorphisms in GLO1, ACE, and CBR1 genes associated with severe DN in Pakistani patients. Notably, a nonsense mutation in GLO1 led to a truncated, non-functional protein, while missense mutations in GLO1 and CBR1 potentially disrupt enzyme function, possibly accelerating DN progression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.