Abstract

Signal amplification is crucial to improve the sensitivity for the electrochemical detection of cardiac troponin I (cTnI), one of the ideal biomarkers for early acute myocardial infarction (AMI) diagnosis. Herein, we developed a novel signal amplification strategy to construct a sandwich-type electrochemical aptasensor for the detection of cTnI. Core-shell Pd@Pt dendritic bimetallic nanoparticles loaded on melamine modified hollow mesoporous carbon spheres (Pd@Pt DNs/NH2-HMCS) was prepared as labels to conjugate with thiol-modification DNA aptamers probe for signal amplification. While introducing numerous amino groups, the melamine functionalized hollow mesoporous carbon spheres (NH2-HMCS) retained the edge-plane-like defective sites for the adhesion and electrocatalytic reduction of H2O2. With the unique characteristics of NH2-HMCS, it not only enhanced the dispersity and loading capacity of core-shell Pd@Pt dendritic bimetallic nanoparticles (Pd@Pt DNs), but also improved the stability of bonding by the affinity interaction between Pd@Pt DNs and amino groups of melamine. Meanwhile, the synergistic catalysis effect between Pd@Pt DNs and NH2-HMCS significantly enhanced the electrocatalytic reduction of H2O2 and further amplified the signal. Under optimal conditions, this recommended aptasensor for cTnI detection displayed a wide dynamic range from 0.1 pg/mL to 100.0 ng/mL and a low detection limit of 15.4 fg/mL (S/N = 3). The sensor also successfully realized the analysis of cTnI-spiked human serum samples, meaning potential applications in AMI diagnosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call