Abstract

As the interlayer between the skin and the environment, textiles play a vital role in achieving personal comfort and safety by managing the localized human body thermal and moisture conditions. However, intense exercise or sunlight exposure in hot and humid outdoor environments still leads to the accumulation of heat and excessive sweat on the human body. This reduces industrial labor productivity and results in economic losses. Herein, a sandwich-structured textile with a hierarchically nanofibrous network and Janus wettability is demonstrated. This textile exhibits excellent spectral selectivity (with a solar reflectance of 93.4% and a human body infrared emittance of 96.3%), rapid sweat evaporation rate (0.26 g h−1), and directional water transport property (a one-way transport index of 1140%). In a practical scenario, a human body covered by this sandwich-structured textile achieved a temperature drop of ∼ 4.2 °C compared with a commercial cotton textile. Through the integration of decent outdoor radiative cooling and continuous sweat wicking-drying properties, this sandwich-structured textile exhibits enhanced personal thermal and moisture management performance. Consequently, this textile leads to a significant reduction in human sweat consumption and excessive heat stress in outdoor environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call