Abstract
HypothesisIn general, microporous membranes with waterproofness, breathability, and oil-water separation performance are prepared from hydrophobic raw materials and demonstrated to exhibit an interconnected porous structure. Hence, constructing porous and gradient-structured composite membranes by integrating robust hydrophobic/lipophilic polyvinylidene fluoride (PVDF) and breathable polyurethane (PU) microporous membranes could help realize a selective separation process. ExperimentHere, novel polyvinylidene fluoride-carbon nanotube/polyurethane/polyvinylidene fluoride-carbon nanotube (PVDF-CNT/PU/PVDF-CNT) sandwich-structured microporous membranes were fabricated by sequential electrospinning. The influence of the thickness ratios of PVDF/PU/PVDF and carbon nanotube (CNT) content on the fibrous construction, porous structure, and wettability of the composite membranes was systematically studied by scanning electron microscopy (SEM), pore size, porosity and contact angle. Significantly, the effect of the fibrous construction, porous structure, and wettability on the waterproofness, breathability, and oil-water separation ability of the composite membranes was investigated. FindingsThe novel separation system proved the ‘complementary effect’ between the PVDF and PU membranes. Further, because of the elaborate gradient construction, superior porous structure, and robust hydrophobicity-oleophilicity, the resultant membranes exhibited moderate waterproofness (38 kPa) and excellent breathability (8.63 kg m−2 d−1), and oil-water separation, confirming that they could be promising alternatives for numerous practical applications, such as protective clothing, treatment of oil-contaminated water, and membrane distillation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.