Abstract

The development of piezoelectric polymers with superior electromechanical performance is a demand in the areas of flexible sensors, actuators and tissue engineering, among others. In this work, we reported a novel sandwich-structured piezoelectric composites comprising of poly(vinylidene fluoride-hexafluoropropylene) [P(VDF-HFP)] and Prussian blue analogs Co3[Co(CN)6]2 with excellent electromechanical activities. The large specific surface area, unique three-dimensional porous nanostructure and redox behavior of Co3[Co(CN)6]2 appeared to significantly promote the interfacial coupling effect within P(VDF-HFP), resulting in enhanced electromechanical response. Moreover, the sandwich structure topological design would enlarge the interfacial coupling effect, strengthen the breakdown strength and consequently raise the electromechanical performance. For instance, a maximum piezoelectric coefficient d33 of ~ 41 pC/N can be achieved in the sandwiched composites at a loading of 0.8 wt%, which is 1.78 times that of pure P(VDF-HFP). Furthermore, the sandwiched composites possess superior electromechanical coupling factor k33 up to 0.215, while that of pure P(VDF-HFP) is only 0.134.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.