Abstract

The West Lake Sag is abundant in oil and gas reserves, primarily in the Huagang Formation reservoir which serves as the primary source of production. The level of exploration is rather high, but there are still some unresolved issues, such as an unclear understanding of pore evolution features and reservoir growth mode. To tackle the aforementioned problems, this study employs optical microscopic examination, scanning electron microscope analysis, inclusion analysis, isotope analysis, X-ray diffraction analysis, and other techniques to elucidate the primary factors governing reservoir development and establish an analytical model regarding the cause of the sandstone reservoir. The results are as follows: (1) The sandstone reservoirs of the Huagang Formation of the Yuquan (abbreviated to YQ) Structure are now in the mesomorphic A stage as a whole, and minerals such as 4-phase authigenic quartz, 2-phase illite, 2-phase chlorite, 1-phase kaolinite, 1-phase ammonite mixing layer and 2-phase carbonate were formed during the diagenesis. (2) Feldspar and carbonate solution pores make up the majority of the reservoir space. About 10% of the porosity is made up of carbonate solution pores, which are the most prevalent reservoir space. Carbonate solution pores are primarily made up of metasomatic carbonate solution pores and cemented carbonate solution pores. Feldspar solution pores come next, contributing roughly 6.2% of the porosity. At 1.8%, residual intergranular holes are the least common. (3) The four main processes listed below are responsible for the creation of pores in the sandstone of the Huagang creation. The early carbonate cements resist the destruction of mechanical compaction and effectively preserve intergranular volume. The high content of feldspar provided a material basis for later dissolution. Early chlorite surrounding the edges of particles reduced the damage of authigenic minerals to porosity. The faults and cracks formed by the later structural inversion connected to the acidic water in the atmosphere, causing the dissolution of carbonate minerals and feldspar in the sandstone of the Huagang Formation. (4) Carbonate dissolution + feldspar dissolution type, carbonate dissolution type, and feldspar dissolution type are the three main types of reservoir formation in the Huagang Formation; the first two types mainly develop in the Upper Huagang Formation, while the latter mainly develops in the lower part of the Huagang Formation. The research results are conducive to the establishment of a geological prediction model for high-quality reservoirs of different geneses in the Huagang Formation and promote the exploration process of deep-seated hydrocarbons in the West Lake Sag.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.