Abstract
Malachite green is an N-methylated diaminophenylmethane dye that has generated much concern over its suggestive carcinogenic nature. After its excessive use in aquaculture industry as an effective ectoparasitide, much debate was raised over its toxicological effects leading to scientific studies conducted on animal models. Even after several bans, malachite green is still easily available in many parts of the world and unscrupulously even used to give green vegetables a fresher look. This study aims to address this concern by systematically studying the toxicological effects of malachite green through bioimaging in plant and animal cell and tissue. Sandalwood-derived carbon quantum dots have been used as a bioimaging tool since they are non-cytotoxic and show excellent fluorescence properties. Onion tissues demonstrate the translocation of the dye inside cells having high affinity for the nuclei and cell walls. Toxicological effects on the growth of Vigna radiata (mung beans) have been studied methodically. Bioimaging of the transverse cross-section of the dye-treated plant root shows a significant difference from the control. In animal cells, dose-dependent decrease in cell viability of MG-63 cells was observed with MG. CQD showed good fluorescence in both cytoplasm and nucleus of MG63 cells. In addition, CQDs were employed as a great tool for bioimaging of the histopathologically adverse effects of MG in Golden hamster animal model. This study showed CQDs could be used as an alternative non-site specific fluorescent probe for cell and tissue imaging for better visualization of cell and tissue architectural changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.